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time-dependent molecular trajectories calculated in 
a molecular dynamics study (Dove, Fincham & 
Hubbard, 1986); a detailed study of the diffuse scat- 
tering from a single crystal of SF6 is still missing. 

The occurrence of the maxima of diffuse intensity 
in C2C16 at wavevectors slightly larger than the (111) 
planes in reciprocal space might be a hint to a rota- 
t ional-translational coupling connected with the 
orientational ordering: the attractive forces between 
two parallel orientated nearest-neighbour molecules 
cause a decrease in the centre-of-mass distance of 
about 8%. 

A remarkable experimental fact is the complete 
absence of well defined collective translational excita- 
tions. While it is well known that librational modes 
are usually overdamped in ODIC phases of molecular 
crystals, it is surprising that no acoustic modes could 
be resolved, even at small wavevector transfers. It is 
difficult experimentally to extend the investigation 
closer to the Brillouin-zone centre, because elastic 
scattering from misaligned crystallites leads to 
spurious peaks in this region. The analysis of the 
energy-integrated scattering has shown that the ther- 
mal diffuse scattering due to phonons is relatively 
weak in comparison with the orientational disorder 
scattering. This suggests that the translational dis- 

placements are also of overdamped character prob- 
ably due to a strong translational-rotational coupling. 
SF6 is another example where a similar measurement 
(Dove, Pawley, Dolling & Powell, 1986) revealed no 
well defined acoustic modes, in contrast to most other 
orientationally disordered crystals (e.g. CD4,  CBr4, 
N2) in which the acoustic phonons are well defined, 
at least at small wavevectors. 
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Abstract 

A single-crystal Lorentz correction is derived for the 
case of a general scan through an out-of-plane reflec- 
tion on a four-circle diffractometer with relaxed 
sample-to-detector collimation. When the Lorentz 
correction is expressed in terms of the incremental 
steps in the Eulerian setting angles, structure ampli- 
tudes observed by different scan trajectories, for 
example, some angular in real space and others linear 
in reciprocal space, are put on a common scale, and 
errors due to known missetting of the angles or round- 
ing off of the angles are avoided. 
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Introduction 

In a conventional single-crystal diffraction experi- 
ment the integrated intensities of the reflections are 
measured by rotation of the crystal about one axis of 
the diffractometer, usually that axis which best re- 
solves neighbouring reflections. For a constant veloc- 
ity of rotation of the crystal, different reciprocal- 
lattice points pass through the Ewald sphere at 
different rates and therefore have different times-of- 
reflection opportunity. The inverse of the correction 
factor to be applied to the observed integrated 
intensities to obtain (relative) squared structure 
amplitudes is called the Lorentz factor, following the 
demonstration of its dependence on the experimental 
arrangement by Lorentz in one of his classroom lec- 
tures (Azaroff, 1968). 

For some structures, particularly those which are 
incommensurate or exhibit macroscopic stacking 

O 1988 International Union of Crystallography 



258 A GENERAL LORENTZ CORRECTION 

faults along one axis, it might be preferable to perform 
linear scans in reciprocal space rather than pure rota- 
tional scans in real space, or to combine data sets 
obtained by both types of scans. Note that linear 
refers to the trajectory of the detector aperture through 
reciprocal space. For a particular reflection observed 
in this scan, the motion of the corresponding 
reciprocal-lattice point through the Ewald sphere is 
still along an angular trajectory (Fig. 1). Lebech & 
Nielsen (1975) have derived the Lorentz factor for 
linear reciprocal-lattice scans for the case of a two- 
axis equatorial-plane diffractometer. 

While it is usually desirable to restrict the scans to 
the equatorial plane in order to take best advantage 
of the resolution of the diffractometer, in general, 
scans might be performed at an angle to the equatorial 
plane through reflections that do not lie in the 
equatorial plane. In this paper we derive and discuss 
the application of a general Lorentz correction that 
is valid for any scan through a general out-of-plane 
reflection. Axe & Hastings (1983) presented general 
expressions for the Lorentz factor for samples with 
arbitrary horizontal and vertical mosaic on two- and 
three-axis spectrometers. In the present derivation, 
however, we assume that the sample mosaic is negli- 
gibly small, and that the sample-to-detector collima- 
tion is relaxed so that the detector receives all the 
scattered radiation from the reflection under con- 
sideration. 

~ d sphere . . 

To derive the Lorentz factor for specific scan 
geometries we adopt the definitions of Busing & Levy 
(1967) for the Eulerian angles g and ~p defining the 

Angle definitions 

Fig. 1. Ewald construction for an out-of-plane reflection. E is the 
centre of the Ewald sphere, O is the sample position and origin 
of the reciprocal lattice and P is the tip of the scattering vector 
k of length 2(sin 0)/;t. The diffracted beam and the scattering 
vector are along EP and OP respectively. Whatever the trajectory 
of the scan the tip of the scattering vector moves over the surface 
of the sphere with radius 2(sin 0)/;~. 

crystal orientation. We denote however their v by to, 
since our definition corresponds to the physical angle 
to on most modem four-circle diffractometers. We 
also adopt their definitions for the frames of reference 
attached to the crystal, the orienter axes and the 
laboratory, and their nomenclature for the matrices 
B, U, ~ ,  X, and 1~ that transform a vector from one 
frame to another (except that their matrix N corre- 
sponds to our matrix fl).  In addition, to allow for 
out-of-plane reflections, as might be scanned on a 
normal-beam diffractometer or on a four-circle 
diffractometer equipped with a large-area position- 
sensitive detector (PSD), two angles are required to 
specify the direction of the diffracted beam. These 
are 7, the angle made by the projection of the diffrac- 
ted beam onto the equatorial plane with the incident 
beam, and v, the angle of the diffracted beam out of 
the equatorial plane (Fig. 1). 20 remains the angle 
between the incident and diffracted beams. 

The integrated intensity 

The square of the structure-factor amplitude, ]Fhkl[ 2, 
is proportional to the background-corrected intensity 
per unit time of the reflection hkl integrated over 
reciprocal space. If the (continuous) function 
l(x,  y, z) is the background-corrected intensity distri- 
bution in reciprocal space in the vicinity of the 
reciprocal-lattice point hkl, then, 

IFhk,12oc II(x, y, z) dx dy dz, 

where x, y, z are the axes of an arbitrary Cartesian 
coordinate system in reciprocal space. For a particular 
reflection we can define x, y, z to be the local Car- 
tesian coordinate system with origin at the point hkl 
such that the unit vectors x and y defining the x and 
y axes lie tangent to the Ewald sphere, and the unit 
vector z defining the z axis is perpendicular to the 
Ewald sphere, z is also along the diffracted beam. 
The integration over x and y, for each section z, 
corresponds to Ixy(Z), the background-corrected total 
count observed at the point z in the scan. Thence, 

IFhk,12oC $ Ixr(z)Oz. 

For a single detector, Ixy(z) is the background- 
corrected count received through the detector aper- 
ture at the point z; for a PSD, lxy(z) is the back- 
ground-corrected sum of the counts over an area on 
the PSD in the vicinity of the reciprocal-lattice point. 

In general, however, the direction of motion of the 
reciprocal-lattice point through the Ewald sphere is 
not parallel to z. Instead, L,y is measured as a function 
of some scan variable s, so that, 

Ifh~,l~ocf l , ,r(s)(dz/ds) ds. 

The scan variable may be, for example, the rotation 
angle about a fixed axis, or the displacement along 
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a reciprocal-lattice line through hkl. The derivative 
dz/ds, whose inverse is proportional to the Lorentz 
factor L, gives the differential dz in the position of 
the reciprocal-lattice point along the normal to the 
Ewald sphere corresponding to a differential ds in 
the scan variable. 

Since the interval in s over which lxy is non-zero 
is usually small, the factor (dz/ds) is evaluated at 
the peak maximum and taken outside the integral, to 
give 

IFhk,12oc(dz/ds) ~ Ixy(S) ds. 

The integral ~ Ixy(S)ds is conventionally called the 
integrated intensity of the reflection, and clearly 
depends on the scan type. On modern automatic 
diffractometers a scan is normally carried out by n 
successive counts at n -  1 incremental steps Asi and 
the integration is replaced by a summation. Since the 
steps may be unequal by choice or by mechanical 
limitations, it is preferable to use a trapezoidal 
summation: 

n - - I  

IFhk,12°c(dz/ds) Z Asi[Ixy(S,+,)+ Ixy(S,)]/2. (1) 
i = 1  

The Lorentz factor for a rotational scan in real space 

For rotational scans in real space a simple general 
expression for the Lorentz factor can be derived. If 
r is the unit vector along the scan axis and k is the 
scattering vector, the vector differential in the position 
of the reciprocal-lattice point for a left-handed rota- 
tion dr is 

r × k d r ,  

and the component along the normal to the Ewald 
sphere is 

Therefore, 

dz = z . r x k d r .  

d z / d r = z . r x k .  

The sign of the result, when evaluated, is immaterial 
since it depends only on the arbitrarily chosen sense 
of rotation of the reciprocal-lattice point through the 
Ewald sphere. The result will also contain a multiplier 
A -1, where A is the wavelength, which arises from 
the radius of the Ewald sphere and gives dimension 
to the scattering vector k. The Lorentz factor is con- 
ventionally taken to be just the angular dependent 
factors in (dz/dr) -1, i.e. 

L-1 = Alz.rxk[. 

Lorentz factors for the common scan geometries 
are reported by Lipson (1972) in terms of the angles 
normally appropriate to these geometries. For later 
comparison with the generalized Lorentz correction 
we derive the Lorentz factors for two specific cases. 

By inspection of Fig. 1, the vectors z and k in the 
laboratory frame xLyLzL are 

/ s i n  7cos ~,~ 

z = ~cos 7 cos z,] (2) 

\ sin v / 

and 

s i n y c o s v  ) 

k = ( 1 / A )  c o s T c o s v - 1  . (3) 

sin v 

The direction of the scan axis depends on the scan 
geometry and must be considered separately for each 
case. 

( a ) Normal-beam geometry 

The scan axis is the to axis, zL, so that 

and 

L -1 = sin 7 cos v. (4) 

Equatorial-plane geometry is the special case of nor- 
mal-beam geometry for which P in Fig. 1 is coincident 
with R, so that 3' = 20 and p = 0. Thence, 

L - l = s i n 2 0 .  

( b ) Flat-cone geometry 

The scan axis is perpendicular to the reciprocal- 
lattice plane under investigation. For a PSD extended 
vertically the axis would normally be oriented to lie 
in the equatorial plane perpendicular to the plane 
defined by the points E, P and Q in Fig. 1. The scan 
axis is then along OS, from which follows 

and 

cos 7 

r-- -So, ) 

L-1 = cos 7 sin v. 

The Lorentz factor for linear scans in reciprocal space 

For a step scan along a line in reciprocal space the 
scan direction could be described by the unit vector 
q in a reciprocal-space Cartesian frame [e.g. that 
defined by Busing & Levy (1967)]. The vector 
differential q dq in reciprocal space is I )X~Uq dq in 
the laboratory frame, so that, if the coefficients in 
the summation of (1) are Aqi along q, the Lorentz 
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factor is 

L -1 = h d z / d q  = hz . f lXOUq.  

More commonly though the scan steps are specified 
as fractional increments Ah~, Akj, Al~ in all three of 
the Miller indices h, k, l and d& in (1) is chosen to 
be just one of these (Ah~ say), even if the scan is 
inclined to all three axes of the reciprocal unit cell. 
While this makes specifying the scan commands con- 
venient, it does complicate the calculation of the 
Lorentz factor since a further factor d q / d h  must be 
included; 

L -~= A d z / d h =  A ( d z / d q ) ( d q / d h )  

= A (z. l~XOUq)(q.  Bh), 

where h is the reciprocal-lattice vector corresponding 
to h. 

These definitions of the Lorentz factor are con- 
sistent with the definition of the Lorentz factor for 
rotational scans in so far as they correct for the 
different velocities of the reciprocal-lattice points 
through the Ewald sphere in the cases of linear scans 
through different reciprocal-lattice points and linear 
scans in different directions through the same point. 
However the different factors are not directly compar- 
able because they do not have the same dimensions; 
the units of d z / d r  are (A, o)-1, while those of d z / d h  
are (/~)-~ and d z / d q  is dimensionless. In fact, the 
magnitude of d z / d h  depends on the reciprocal-cell 
dimensions ! Consequently, even though in 
equatorial-plane geometry a linear scan in reciprocal 
space along the scattering vector and an to:20 scan 
follow the same trajectory with regard to the setting 
angles to and 20, they do not have the same Lorentz 
factor. 

The number of matrix operations to evaluate d z / d q  
or dz /dh  makes the calculation of the Lorentz factor 
somewhat tedious. It is computationally more con- 
venient to use the general formulation of (dz/ds)As~ 
derived in the next section. 

A g e n e r a l  L o r e n t z  c o r r e c t i o n  

Rather than evaluate d z / d s  for the particular type of 
scan and then perform the integration over s, we can 
evaluate (dz/ds)As~ directly in terms of the incre- 
mental steps in the instrumental angles that effect the 
steps A&. If Ak~ is the vectorial shift in the position 
of the reciprocal-lattice point corresponding to the 
scan step A&, the shift along z is z.Ak~ which is 
equivalent to (dz/ds)As~. 

Let the reflection hkl with scattering vector k 
diffract at the setting to, X and ~. The components of 
k in the laboratory frame are given by (3). At the 
point with setting to + Ato~, X + AXe, ~p + A~p, in the 
general scan through hkl, the scattering vector will 

have rotated to the position 

k +  Aki = [ -~ 'X ' ( l ) '¢ I ) - lx -  l~"~-lk,  

where the angular arguments in the transformation 
matrices 1)', X', ~ ' ,  ~-1 ,  X-1 and fl-1 (as defined by 
Busing & Levy, 1967) are to + Ato~, ) + AXe, ~ + A~,  
- ¢ ,  -X  and - to respectively. Since the ranges in to, 
X and ~ over which the reflection is observed are 
usually small, we can approximate cos Ato~ by 1 and 
sin Ato~ by Atoi etc., and we can neglect the cross terms 
of the form Ato~ AX~ etc., to obtain 

'Atoi(cos 3' cos v - 1) + AX, cos to sin v \ 
+ A~i(cos X cos 3' cos v 
- sin to sin X sin v - cos X) 

- Ato i sin 3' cos v - Axi sin to sin v 
Ak=(1/h) -A~p,(cos X sin 3'cos v 

+ cos to sin X sin v) 

-AX~{sin (3'- to) cos v+sin to} 
+A¢, {cos to sin X 
-sin X cos (3'- to) cos v} 

Then, the coefficients of the counts in the summation 
of (1) are 

h(dz /ds)As i  =- hz.  Aki 

= -[Ato~ sin 3' cos v + AX~ sin to sin v 

+ A~p~ (cos X sin 3' cos v 

- c o s  to sin X sin v)]. (6) 

We shall call (6) the general Lorentz correction. 
According to our derivation the arguments of the 
trigonometric factors in (6) should be the setting 
angles at each step through the scan. This is valid 
only if the wavelength dispersion dominates the reso- 
lution function. Removing dz /d s  from the integral 
in (1) is equivalent to evaluating the trigonometric 
factors at the reflection centre. While this in turn is 
only valid if the wavelength dispersion and incident- 
beam divergence are negligible components of the 
resolution function, it is a sufficient approximation 
for many diffractometers. 

We now consider the form of (6) in some special 
cases. 

(5) 

( a ) Equatorial-plane geometry 

The scattering vector lies in the equatorial plane 
when it is correctly oriented to diffract (3' = 20 and 
v = 0 ) ;  the scan however may not necessarily be 
parallel to the equatorial plane (and Ato~, AX~ and A~pi 
are in general non-zero); 

h (dz/ds)Asi  = -[Atoi sin 20 + A~o~ cos X sin 20]. (7) 

This expression applies to all scans where the detector 
remains in the equatorial plane. There is no contribu- 
tion from dx~ since a X rotation for a reflection in 
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the equatorial plane moves the scattering vector per- 
pendicular to z. 

For a pure w scan (7) reduces to the scan step times 
the familiar Lorentz factor for an oJ scan: 

A(dz/ds)Asi  = -&oi  sin 20. 

( b ) Normal-beam geometry 

In the general normal-beam case the crystal may 
be oriented by all three of w, X and q~, but the scan 
itself is a pure ~o scan (Ax~ = Aq~ = 0); 

h (dz/ds)As~ = -Aw~ sin 3/cos v, 

which agrees with the correction derived from z.r  x k 
[(4)]. 

Discussion 

Although (6) in general no longer permits a separation 
of (dz/ds)Asi  into an incremental scan step and a 
Lorentz factor, it does correct for the different 
velocities of different reciprocal-lattice points through 
the Ewald sphere. Moreover it offers two distinct 
advantages over the Lorentz correction hitherto 
applied to linear scans in reciprocal space. 

First, it is completely general. The same analytical 
form for the correction applies to rotational scans in 
real space as to linear scans in reciprocal space, as 
indeed to any type of scan. This affords considerable 
simplification in the data-reduction program. 

Secondly, since the AoJi, AX~ and A~pi used in (6) 
are the observed steps, it corrects for any known 
errors in the positioning of successive steps whatever 
the type of scan. For a linear scan in reciprocal space, 
equal steps along q are usually desired. In practice 
however the extent to which successive steps Aq~ in 
a step scan are equal is limited by the mechanical 
precision of the instrument axes; for many conven- 
tional diffractometers the smallest angular step of any 
axis is 0.01 o. Hence in the conversion from q to the 
setting co, X, ~P some rounding off of the angles will 
result, with the consequence that successive steps will 
be constant in neither Aqi nor angle. In general the 
scan performed will not even be linear in reciprocal 
space. For a rotational scan about one axis, any 
known irregularities in the size of successive steps 
are corrected for by the trapezoidal summation, since, 
all other instrumental angles being fixed, the scan is 
still carried out along the one arc. For the reciprocal- 
space scan, however, even if the q values correspond- 
ing to the actual set angles were calculated and used 
in the summation of (1) the irregularities in the steps 
would not be entirely corrected for since the scan 
performed is no longer linear. Performing the summa- 
tion over hz.Ak~ rather than Aq~ corrects completely 
for missetting of successive steps, since hz.Aki is 
only sensitive to the distance perpendicular to the 
Ewald sphere. The same comment applies equally 

Table 1. Mean angular and integration steps (o) for 
some angular and linear scans through the 220 reflec- 

tion of  D K D P  at ( a ) u = 0  ° and ( b ) v = 2 0  ° 
'010 scan ' ,  f o r  e x a m p l e ,  d e n o t e s  a scan  a long  the  r e c i p r o c a l - s p a c e  
d i r ec t ion  [010] t h r o u g h  the  220 ref lect ion.  [ ] c o n t a i n s  the  roo t -  
m e a n - s q u a r e  d e v i a t i o n  in the  leas t  s igni f icant  digi ts  o f  i nd iv idua l  
s teps  f r o m  the  m e a n  step.  T h e  re la t ive  coun t ing-s ta t i s t i c s  e r ro r  in 
F 2 is less t h a n  0 . 1 % .  

( a )  Peak  m a x i m u m  at  7 = 34-7 °, v = O  °, o~ = 17.04 °, X =  180.00 °, 
= - 1 3 8 . 4 2  ° 

Scan  type  AoJ AX Aq~ h ( d z / d s ) A s  F 2 

o~ scan 0.070 [8] 0 0 -0"039 [5] 213 
010 scan 0.022 [7] 0.000 [2] 0.072 [4] 0.028 [6] 213 
011 scan 0.022 [8] -0.108 [7] 0.072 [4] 0.028 [6] 213 

(b)  Peak  m a x i m u m  at  3' = 28"18 °, v = 20 °, o~ = 21.15 °, X = 144"26°, 
~o = - 1 3 8 . 3 8  ° 

Scan  type  & o  AX A~o 

oJ scan 0.070 [ 10] 0 0 
h' scan 0 0.150 [0] 0 
~0 scan 0 0 0.070 [0] 
001 scan 0.000 [5] -0.217 [10] 0.001 [2] 
010 scan 0.013 [9] 0.052 [4] 0.072 [4] 
011 scan 0.013 [11] -0.057 [8] 0.072 [4] 

A ( d z / d s ) A s  F 2 

-0-03114) 222 
-0.01910] 224 

0.038[0] 223 
0-027[3] 221 
0.027[4] 225 
0-04116] 224 

well to flat-cone scans in which the rotation of the 
levels is accomplished by a combination of angular 
displacements in oJ, X and ~p (Prince, Wlodawer & 
Santoro, 1978). The trapezoidal summation should 
be performed over Az.Aki rather than over an angle 
which does not correspond to a physical axis of the 
instrument. Note however that use of (6) will not 
correct for unknown positioning errors. The effect of 
these on the precision of the structure amplitude has 
been discussed by Lehmann (1975). 

A final caution is that, as with any scan to measure 
F 2, care must be taken to ensure that the detector is 
large enough to receive the diffracted beam over the 
full active range of the reflection. This is particularly 
so if the trajectory of the scan is not nearly parallel 
to the long axis of the resolution ellipsoid. 

Table 1 presents the observed relative F 2 obtained 
using (1) and (6) for a number of different types of 
scans through the 220 reflection of a 3 mm cubic 
crystal of KD2PO4 (DKDP). The scans were made 
on the four-circle neutron diffractometer D19 at the 
Institut Laue-Langevin (Thomas, Stansfield, Ber- 
neron, Filhol, Greenwood, Jacob6, Feltin & Mason, 
1983). This diffractometer is equipped with a large 
two-dimensional PSD which permits general scans 
through reflections out of the equatorial plane. 
Various angular and linear scans were made at v = 0 
and u = 20 ° at a wavelength of 1-55 A. Although the 
angles could be read with an accuracy of 0.001% they 
could be set only to the closest 0.01°; this is reflected 
in the root-mean-square deviations of the angular 
steps, especially for the linear scans. The agreement 
amongst the F 2 at a particular v is very good. In 
general there are two degrees of freedom for the 
orientation of a particular reflection, choice of u and 
rotation around the scattering vector ( -choice  of q~). 
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The orientation of the crystal with respect to rotation 
around the scattering vector was the same for all scans 
at a particular ~ value. The mean path lengths through 
the crystal are therefore the same for all these scans. 
This was not the case for the scans at different 9, 
hence the difference between the average F 2 at the 
two ~, positions. 

We thank Claude Zeyen and Mogens Lehmann for 
constructive discussions. 
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Abstract 

A detailed solution of Kato's equations describing 
the propagation of X-rays or neutrons in a crystal 
containing a statistical distribution of imperfections 
is presented: this solution makes use of propagation 
operators to describe multiple scattering events. Cor- 
rections to Kato's original solution are given which 
have a significant effect, even in the case of crystals 
with a high degree of long-range perfection. The 
present modified solution is applied to experimental 
measurement on parallel plates of silicon with 
different dislocation densities by Olekhnovich, Kar- 
pei, Olekhnovich & Puzenkova [Acta Cryst. (1983), 
A39, 116-122]. The theory reproduces observations 
quite well, in contrast to conclusions reached by 
Olekhnovich et al. on the basis of the original solution. 
It can be inferred that the basic ideas of Kato allow 
for a correct interpretation of diffraction reflectivities 
in highly perfect crystals, where a significant contribu- 
tion from incoherent components of scattered 
intensities must be incorporated. However, the theory 
has to be modified for the case of lower long-range 
perfection: this involves the modification of the 
expressions for the effective correlation lengths that 
enter the theory. 
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I. Introduction 

Until 1980, extinction was treated by two very 
different approaches. Following the ideas of Darwin 
(1914, 1922), the mosaic model was introduced. In 
such a model, one considers perfectly coherent multi- 
ple scattering within perfect mosaic block, the so- 
called primary extinction, and totally incoherent 
multiple scattering between adjacent blocks, the so- 
called secondary extinction. 

Secondary extinction is therefore described by 
energy coupling equations between the incident and 
diffracted beams (Zachariasen, 1967; Becker & Cop- 
pens, 1974; Kato, 1976), the solution of which is 
difficult due to the boundary conditions imposed by 
the sample. Primary extinction, on the other hand, is 
commonly dealt with through the amplitude coupling 
equations of dynamical theory (Zachariasen, 1945; 
Batterman & Cole, 1964; Authier, 1970) for perfect 
crystals. 

Mosaic theory is quite popular in crystallography, 
and has been successfully applied to many practical 
situations, according in particular to the solution of 
Becket & Coppens (1974, 1975). Despite this success, 
it is physically doubtful, since it separates various 
regions of space discontinuously and arbitrarily. It is 
clear that distortions from perfect periodicity are 
much more subtle. A correct model should contain 
as extreme limits perfect-crystal and mosaic-crystal 
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